\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Mendery \& \multicolumn{3}{|r|}{Tuesdery} \& \multicolumn{2}{|l|}{Wedmesday} \& \multicolumn{3}{|r|}{Thursdery} \\
\hline Compare the numbers using \(>,<\), or \(=\).
\[
\begin{gathered}
827,937 _ \text {_ } 827,017 \\
8,278,492 _8,372,189 \\
\hline
\end{gathered}
\] \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Write this number in expanded form. \\
Twenty three thousand, four hundred thirty six
\end{tabular}} \& \multicolumn{2}{|l|}{How many times larger is 700 than 70 ?} \& \multicolumn{3}{|l|}{Write this number in word form.
\[
39,083
\]} \\
\hline Find the Sum.
\[
27,202+3,489
\] \& \multicolumn{3}{|l|}{Find the Difference.
27,202-3,489} \& \multicolumn{2}{|l|}{Find the Sum.
\[
17,081+8,391
\]} \& \multicolumn{3}{|l|}{Find the Difference.
\[
17,081-8,391
\]} \\
\hline Find the product.
\[
729 \times 8
\] \& \multicolumn{3}{|l|}{Find the product.
\[
7,876 \times 8
\]} \& \multicolumn{2}{|l|}{Find the product.
\[
285 \times 7
\]} \& \multicolumn{3}{|l|}{Find the product.
\[
549 \times 6
\]} \\
\hline Find the Quotient.
\[
3,729 \div 5
\] \& \multicolumn{3}{|l|}{Find the Quotient.
\[
6,392 \div 8
\]} \& \multicolumn{2}{|l|}{Find the Quotient.
\[
4,768 \div 7
\]} \& \multicolumn{3}{|l|}{Find the Quotient.
\[
2,489 \div 4
\]} \\
\hline A book salesman sold 6,358 books. Each book cost \(\$ 8\). How much money did he make? \& \multicolumn{3}{|l|}{There are 568 boxes of erasers. In each box, there are 48 erasers. How many erasers are there in all?} \& \multicolumn{2}{|l|}{Melissa is having a party with 15 guests. If she spent a total of \(\$ 330\) on food, how much did she spend on food for each person?} \& \multicolumn{3}{|l|}{Ann purchased 8 packs of grape gum, 12 packs of cherry gum, and 6 packs of strawberry gum. If there are 6 pieces in each pack, how many pieces of gum did Ann purchase?} \\
\hline Find ALL the factors of 45. Prime or Composite? \& \multicolumn{3}{|l|}{Find the first 5 multiples of 9 .} \& \multicolumn{2}{|l|}{Find ALL the factors of 73. Prime or Composite?} \& \multicolumn{3}{|l|}{Find the first 5 multiples of 16 .} \\
\hline \begin{tabular}{l}
Fill in the table and find the rule. \\
Rule:
\end{tabular} \& Rule \& \begin{tabular}{|c|}
\hline 1 \\
\hline 2 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 10 \\
\hline
\end{tabular} \& \begin{tabular}{l}
d find the \\
\begin{tabular}{|c|}
\hline 3 \\
\hline 7 \\
\hline \\
\hline
\end{tabular}
\end{tabular} \& Rule: \& d find the \& Rule: \& \begin{tabular}{|c|}
\hline table \\
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 10 \\
\hline
\end{tabular} \& d find the
\[
\begin{array}{|c|}
\hline 3 \\
\hline 6 \\
\hline 9 \\
\hline
\end{array}
\] \\
\hline OPTIONAL: Find an equivalent fraction.
\[
\frac{4}{5}
\] \& \multicolumn{3}{|l|}{OPTIONAL: Find an equivalent fraction.
\[
\frac{3}{4}
\]} \& \multicolumn{2}{|l|}{OPTIONAL: Use multiplication to find 2 equivalent fractions.
\[
\frac{1}{4} \quad \frac{1}{6}
\]} \& \multicolumn{3}{|l|}{OPTIONAL: Use multiplication to find 2 equivalent fractions.
\[
\frac{2}{5} \quad \frac{3}{7}
\]} \\
\hline Place the fractions on the number line below. \& \multicolumn{3}{|l|}{Compare the fractions using \(>,<\), or \(=\)

$$
\frac{3}{6}-\frac{1}{3}
$$} \& \multicolumn{2}{|l|}{Compare the fractions using $>,<$, or $=$

$$
\text { (} \frac{3}{4}-\frac{5}{7}
$$} \& \multicolumn{3}{|l|}{Compare the fractions using $>,<$, or $=$

$$
\square \frac{2}{4}-\frac{4}{6} \square
$$} \\

\hline
\end{tabular}

